

DWW-003-016304 Seat No. _____

M. Sc. (Mathematics) (Sem. - III) (CBCS) Examination

May / June - 2015

Maths. CMT - 3004: Discrete Mathematics

Faculty Code: 003 Subject Code: 016304

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) Answer all the questions.

(2) Each question carries 14 marks.

1 Answer any Seven

 $7 \times 2 = 14$

- (a) Define homomorphism of semigroups. Show that the homomorphic image of a monoid is a monoid.
- (b) Define (i) a subsemigroup (ii) a submonoid. Illustrate them with examples.
- (c) Define a lattice. If (L, \leq) is a lattice, then verify that (L, \leq^{-1}) is also a lattice.
- (d) Define a complemented lattice. Show that D_{2014} is complemented.
- (e) Define a distributive lattice. Let L=O, where O is the collection of open sets in R. Verify that the lattice (L,\subseteq) is distributive.
- (f) Define the language of a phrase structure grammar.
- (g) State Kleene's theorem.

- (h) Define a Boolean Algebra. Give an example of a Boolean Algebra which contains exactly 128 elements.
- (i) Define a machine congruence on a finite state machine.
- (j) When do we say that two propositions p, q are logically equivalent?

2 Answer any Two

 $2 \times 7 = 14$

- (a) Define transitive closure of a relation R defined on a nonempty set A. If A contains exactly n elements, then prove that $\bigcup_{i=1}^{n} R^{i}$ is the transitive closure of R.
- (b) (i) Let $L = \mathbf{N}$. Prove that L forms a distributive lattice under the divisibility relation.
 - (ii) Prove that the direct product of two bounded. lattices is also bounded.
- (c) State the fundamental theorem of homomorphism of semigroups. Let $A = \{0, 1, 2\}$. Prove that $(N \cup \{0\}, +)$ is isomorphic to a quotient semigroup of A^* .
- 3 (a) Let $G = (\{v_0, a, b\}, \{a, b\}, V_0 \mapsto)$ be a phrase structure 5 grammar where the productions of G are given by (1) $v_0 \mapsto aav_0$, (2) $v_0 \mapsto a$, and 3. $v_0 \mapsto b$, Find L(G).
 - (b) Find a Boolean expression for the function $f:B_4 \to B$ 5 for which $S(f) = \{0000, 0010, 0101, 0111, 1101, 1111, 1000, 1010\}$

(c) Let $f_1, f_2: B_n \to B$. Denoting the number of elements in **4** a finite set. A by |A|, verify that $|S(f_1 \vee f_2)| = |S(f_1)| + |S(f_2)| - |S(f_1 \wedge f_2)|$.

OR

- 3 (a) Construct a phrase structure grammar G with $\{a, b, c\}$ 5 as its set of terminal symbols such that $L(G) = \{a^n c b^n \mid n \ge 0\}$.
 - (b) Let (L, \leq) be a lattice. Prove that the following statements are equivalent:
 - (i) For all a, b, $c \in L$, $a \lor (b \land c) = (a \lor b) \land (a \lor c)$. 5
 - (ii) For all $a,b,c,\in L, a \land (b \lor c) = (a \land b) \lor (a \land c)$.
 - (c) Explain what do we mean by the quotient machine $\mathbf{4}$ of a finite state machine M determined by a machine congruence R on M.
- 4 Answer any Two

 $2 \times 7 = 14$

- (a) Let M be a Moore machine with $S = \{s_0, s_1, s_2\}$, $I = \{0,1\}$, $f_0 =$ the identity on S, $f_1(s_0) = s_1$, $f_1(s_1) = s_2$, and $f_1(s_2) = s_2$ and $T = \{s_2\}$. Find L(M). Construct a type 3 phrase structure grammar G with I as its set of terminal symbols such that L(G) = L(M).
- (b) State and prove the Pumping lemma.
- (c) Let (L, \leq) be a lattice. If (L, \leq) is not modular, then prove that L will contain a sublattice which is isomorphic to the pentagon lattice.

- (a) Define (i) a conditional statement (ii) a biconditional statement (iii) a tautology. State and prove De Morgan's laws for logic.
- (b) If M is a nondeterministic finte state machine with I as its input set, then prove that there exists a Moore machine M_1 with I as its input set such that $L(M)=L(M_1)$.
- (c) Define a regular expression over a finite nonempty set A and also mention the rules for associating with each regular expression over A, a regular subset of A^* .
- (d) Let (A, \leq_A) be a lattice. If $f: \to B$ is a bijection, then prove that there exists a relation \leq_B defined on B in such a way that (B, \leq_B) is also a lattice and $f: (A, \leq_A) \to (B, \leq_B)$ is an isomorphism of lattices.